Search results for "Symmetric operator"

showing 3 items of 3 documents

On the regularity of the partial {$O\sp *$}-algebras generated by a closed symmetric operator

1992

Let be given a dense domain D in a Hilbert space and a closed symmetric operator T with domain containing D. Then the restriction of T to D generates (algebraically) two partial *-algebras of closable operators (called weak and strong), possibly nonabelian and nonassociative. We characterize them completely. In particular, we examine under what conditions they are regular, that is, consist of polynomials only, and standard. Simple differential operators provide concrete examples of all the pathologies allowed by the abstract theory.

Discrete mathematicsPure mathematicsGeneral MathematicsHilbert spaceOperator theoryDifferential operatorAbstract theoryDomain (mathematical analysis)symbols.namesakeOperator algebraSimple (abstract algebra)symbolsMathematicsSymmetric operatorPublications of the Research Institute for Mathematical Sciences
researchProduct

Operators on Partial Inner Product Spaces: Towards a Spectral Analysis

2014

Given a LHS (Lattice of Hilbert spaces) $V_J$ and a symmetric operator $A$ in $V_J$, in the sense of partial inner product spaces, we define a generalized resolvent for $A$ and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.

Partial inner product spacesPure mathematicsGeneral MathematicsFOS: Physical sciencesresolventLattice (discrete subgroup)01 natural sciencessymbols.namesakeInner product spaceSettore MAT/05 - Analisi MatematicaPIP-spaceframe multipliers}lattices of Hilbert spacesSpectral analysis0101 mathematicsEigenvalues and eigenvectorsMathematical PhysicsMathematicsResolventframe multipliers010102 general mathematicsSpectrum (functional analysis)Spectral propertiesHilbert spaceMathematical Physics (math-ph)010101 applied mathematicssymbolsspectral properties of symmetric operatorsSpectral theory46Cxx 47A10 47B37
researchProduct

Partial {$*$}-algebras of closable operators. I. The basic theory and the abelian case

1990

This paper, the first of two, is devoted to a systematic study of partial *-algebras of closable operators in a Hilbert space (partial Op*-algebras). After setting up the basic definitions, we describe canonical extensions of partial Op*-algebras by closure and introduce a new bounded commutant, called quasi-weak. We initiate a theory of abelian partial *-algebras. As an application, we analyze thoroughly the partial Op*-algebras generated by a single closed symmetric operator.

Semi-elliptic operatorAlgebraPure mathematicssymbols.namesakeGeneral MathematicsBounded functionClosure (topology)Hilbert spacesymbolsAbelian groupCentralizer and normalizerMathematicsSymmetric operatorPublications of the Research Institute for Mathematical Sciences
researchProduct